当前位置: 首页 > 师资队伍 > 杰出人才 > 国家级青年人才 > 正文

王硕

发布时间:2022-03-30 17:41   点击次数:

   




王硕  教授、博士生导师,国家级青年人才、中国科协青年托举人才

医学科学与工程学院

北航教师个人主页:https://shi.buaa.edu.cn/wangshuoCAS/zh_CN/index.htm

电子邮箱:shuo_wang@buaa.edu.cn


【教育工作背景】

2025.1-至今   北京航空航天大学,医学科学与工程学院,教授

2021.12-2024.12  北京航空航天大学,医学科学与工程学院,副教授

2019.7-2021.11    北京航空航天大学,医工交叉创新研究院,博士后

2014.9-2019.7      中国科学院自动化研究所,模式识别与智能系统,工学博士

2010.9-2014.7      电子科技大学,自动化,工学学士


【研究领域】

从事人工智能大模型、深度学习、医学图像分析(分割、识别、智能计算)领域的交叉研究,研发深度学习算法进行医学影像分析,实现对癌症、心血管疾病等重大疾病的精准诊断、个体化的疗效预测以及精准医疗决策。

相关成果作为第一作者发表在柳叶刀子刊 Lancet Digital Health (IF: 36.615,ESI高被引论文),呼吸医学顶刊 European Respiratory Journal (IF: 33.809, 2篇, 均为ESI高被引论文)、医学图像分析顶刊 Medical Image Analysis (IF: 13.828, ESI高被引论文)上。6篇文章入选ESI高被引论文。

主持国家自然科学基金-重大研究计划(培育)、面上基金、青年基金、北京市自然科学基金-海淀联合基金、参与科技部重点研发计划等。担任Lancet, Nature Communications, IEEE Transactions on Medical Imaging等期刊的审稿人。


【代表性科研项目】

1.国家自然科学基金,面上基金,基于全肺对比学习和影像大模型的晚期肺癌疗效预测研究,2026.01-2029.12,主持;

2.国家自然科学基金,重大研究计划(培育),基于影像-病理多组学深度学习的晚期肺癌免疫治疗疗效预测,2023.01-2025.12,主持;

3.国家自然科学基金,青年基金,基于多任务深度学习和全肺影像分析的肺癌EGFR基因突变预测模型研究,2021.01-2023.12,主持;

4.中国科协“青年人才托举工程”,2022-2024,主持;

5.北京市自然科学基金-海淀原始创新联合基金,基于半监督多组学深度学习的肺癌免疫治疗疗效预测研究,2023.11-2026.12,主持;

6.国家重点研发计划,泛血管动脉粥样硬化的无创评估、危险分层鱼精准治疗策略研究及推广,2023.11-2026.10,课题骨干;

7.国家自然科学基金,重点项目,基于多模态影像组学的肝细胞癌微血管侵犯预测关键问题研究,2020.01-2024.12,参与;


【代表性论著】

[1]  Yongbei Zhu#, Wang Shuo*, Yu He, Weimin Li, Jie Tian. SFPL: Sample-specific fine-grained prototype learning for imbalanced medical image classification [J].Medical Image Analysis, 2024.

[2]  Shuo Wang#, Chengcai Liu#, Yubo Guo#, Haolin Sang, Xiao Li, Lu Lin, Xiaohu Li, Yi Wu, Longjiang Zhang, Jie Tian, Jian Li, Yining Wang. Predicting Prognosis of Light-Chain Cardiac Amyloidosis by Magnetic Resonance Imaging and Deep Learning [J]. European Heart Journal - Cardiovascular Imaging, 2025: jeaf248.

[3]  Shuo Wang#, He Yu, Yuncui Gan, Zhangjie Wu, Encheng Li, Xiaohu Li, Jingxue Cao, Yongbei Zhu, Liusu Wang, Hui Deng, Mei Xie, Yuanyong Wang, Xidong Ma, Dan Liu, Bojiang Chen, Panwen Tian, Zhixin Qiu, Jinghong Xian, Jing Ren, Kun Wang, Wei Wei, Fei Xie*, Zhenhui Li*, Qi Wang*, Xinying Xue*, Zaiyi Liu*, Jingyun Shi*, Weimin Li*, Jie Tian*. Mining whole-lung information by artificial intelligence for predicting EGFR genotype and targeted therapy response in lung cancer: a multicohort study [J]. Lancet Digital Health, 2022, 4(5): e309-e319,2022. (ESI高被引)

[4]  Shuo Wang#, Yunfei Zha#, Weimin Li#, Qingxia Wu#, Xiaohu Li#, Meng Niu#, Meiyun Wang#, Xiaoming Qiu#, Hongjun Li#, He Yu, Wei Gong, Yan Bai, Li Li, Yongbei Zhu, Liusu Wang, Jie Tian*. A Fully Automatic Deep Learning System for COVID-19 Diagnostic and Prognostic Analysis [J]. European Respiratory Journal. 2020, 56 (2): 2000775. (ESI高被引)

[5]  Shuo Wang#, Jingyun Shi#, Zhaoxiang Ye#, Di Dong#, Dongdong Yu#, Mu Zhou#, Ying Liu, Olivier Gevaert, Kun Wang, Yongbei Zhu, Hongyu Zhou, Zhenyu Liu, Jie Tian*. Predicting EGFR Mutation Status in Lung Adenocarcinoma on Computed Tomography Image using Deep Learning [J]. European Respiratory Journal, 2019, 53(3): 1800986. (ESI高被引)

[6]  Shuo Wang#, Mu Zhou#, Zaiyi Liu, Zhenyu Liu, Dongsheng Gu, Yali Zang, Di Dong#, Olivier Gevaert#, Jie Tian*. Central Focused Convolutional Neural Networks: Developing a Data-driven Model for Lung Nodule Segmentation [J]. Medical Image Analysis, 40 (2017): 172-183. (ESI高被引)

[7]  Shuo Wang#, Zhenyu Liu#, Yu Rong#, Bin Zhou, Yan Bai, Wei Wei, Wei Wei, Meiyun Wang*, Yingkun Guo*, Jie Tian*. Deep Learning Provides a New Computed Tomography-based Prognostic Biomarker for Recurrence Prediction in High-grade Serous Ovarian Cancer [J]. Radiotherapy and Oncology, 2019, 132: 171-177.

[8]  Yongbei Zhu#, Shuo Wang#, Siwen Wang, Qingxia Wu, Liusu Wang, Hongjun Li, Meiyun Wang, Meng Niu, Yunfei Zha, Jie Tian*. Mix Contrast for COVID-19 Mild-to-Critical Prediction. IEEE Transactions on Biomedical Engineering, 2021, 68(12):3725-3736.

[9]  Qingxia Wu#, Shuo Wang#, Shuixing Zhang#, Meiyun Wang#, Yingying Ding#, Jin Fang, Qingxia Wu, Wei Qian, Zhenyu Liu, Kai Sun, Yan Jin, He Ma*, Jie Tian*. Development of a Deep Learning Model to Identify Lymph Node Metastasis on Magnetic Resonance Imaging in Patients with Cervical Cancer [J]. JAMA Network Open. 2020;3(7): e2011625.

[10] Qingxia Wu#, Shuo Wang#, Xi Chen#, Yan Wang, Li Dong, Zhenyu Liu*, Jie Tian*, Meiyun Wang*. Radiomics Analysis of Magnetic Resonance Imaging Improves Diagnostic Performance of Lymph Node Metastasis in Patients with Cervical Cancer [J]. Radiotherapy and Oncology, 2019, 138: 141-148.

[11] Zhenyu Liu#, Shuo Wang#, Di Dong#, Jingwei Wei#, Cheng Fang#, Xuezhi Zhou, Kai Sun, Longfei Li, Bo Li*, Meiyun Wang*, Jie Tian*. The Applications of Radiomics in Precision Diagnosis and Treatment of Oncology: Opportunities and Challenges [J]. Theranostics, 2019, 9(5): 1303. (ESI高被引)